Category Archives: Stem Cells

Stem cell power unleashed after 30 minute dip in acid

The revolutionary discovery that any cell can be rewound to a pre-embryonic state remarkably easily could usher in new therapies and cloning techniques

Click here for complete article.

A Brief History of Stem Cells

A timeline spanning 60 years of stem cell research.
Reporting by Kevin Mayer/ Video by Sunya Bhutta
From GEN Publishing

Stem Cells, and Blood Cells, and Blood Counts, Oh My!

University of California, San Francisco, Osher Center for Integrative Medicine presents Mini Medical School for the Public

Stem cell therapy shows promise in repairing brain damage even hours after stroke occurs

Durham, NC – Stroke is a major health concern and is a leading cause of death in the United States, according to the Center for Disease Control. Despite significant research efforts, developing treatments that ensure complete recovery for stroke patients poses an extreme challenge, especially when more than a few hours have passed between onset of the stroke and administration of treatment.

However, a new study released today in STEM CELLS Translational Medicine indicates that endothelial precursor cells, which are found in the bone marrow, umbilical cord blood, and as very rare cells in peripheral blood, could make a significant difference for these patients’ recovery — even in the later stages of stroke. In animal studies, the treatment minimized the initial brain injury and helped repair the stroke damage.

Stem Cells, Cell and Gene Therapy Biotechs to Discuss Capital Formation Strategies and Validation

NEW YORK – In a progressive cell therapy environment that has decreasing clinical attrition, next generation and next-to-launch biotechs along with regulators, will be talking about current strategies and approaches to advance the development of stem cells, cell and gene therapies.

Over 250 biotechs, biopharma, research institutions and regulators will gather at the Stem Cells USA & Regenerative Medicine Congress on September 30 – October 1, 2013.

New method to produce blood cells from stem cells could yield a purer, safer cell therapy

A new protocol for reprogramming induced pluripotent stem cells (iPSCs) into mature blood cells, using just a small amount of the patient’s own blood and a readily available cell type, is reported on in the current issue of STEM CELLS Translational Medicine. This novel method skips the generally accepted process of mixing iPSCs with either mouse or human stromal cells during the differentiation process and, in essence, ensures no outside and potentially harmful DNA is introduced into the reprogrammed cells.

As such, it could lead to a purer, safer therapeutic grade of stem cells for use in regenerative medicine.

The discovery of iPSCs holds great promise for regenerative medicine since it is possible to produce patient-specific iPSCs from the individual for potential autologous treatment — that is, treatment using the patient’s own cells. This avoids the possibility of rejection and numerous other harmful side effects.

Novel liver stem cell model could speed up process for developing new drugs

Durham, NC – The path to bringing a new drug to market is, simply put, a rocky one. Not only is it estimated to take over 12 years at an average price tag running anywhere between US $800 million and US $2 billion, but more often than not the new drug never makes it through the process.

But now a research team reports that it has developed a way to speed up the process. Their work, which involves the creation of a highly stable and sensitive liver stem cell model, is reported in the latest issue of STEM CELLS Translational Medicine.

“Liver toxicity is the second most common cause of human drug failure,” explained David Hay, Ph.D., of the University of Edinburgh’s MRC Centre for Regenerative Medicine, who led the team made up of university colleagues and scientists from Bristol-Myers Squibb, Princeton, N.J. “But one major bottleneck in safety testing new drugs has been finding a routine supply of good quality primary human hepatocytes from the desired genetic background.”

Scientists have long believed that finding an efficient way to force pluripotent stem cells (PSCs) to develop into hepatocytes — liver cells — could be the way around the problem. “But faithfully recapitulating human physiology in a dish from a renewable source remains a holy grail for medicine and the pharmaceutical industry,” Dr. Hay noted.

“Many procedures have been described that, to a limited extent, exhibit human-tissue-specific function in vitro but incomplete cellular differentiation and/or the loss of cell phenotype after they differentiate. Using our knowledge in pharmacology, stem cell biology and materials chemistry, we developed a highly stable and sensitive model.”

Their method involved expanding PSCs and driving their differentiation to hepatocytes, then replating them onto a synthetic surface. The results yielded active cell populations that displayed stable function for over two weeks in vitro.

“The scalable nature of our model combined with the interchangeable genetic element demonstrates clear advantages over the erratic supply of highly variable human hepatocytes from deceased specimens,” Dr. Hay added. “We believe our approach is important and will likely contribute to improvements in drug safety testing.”

“This model was compared to human liver cells from deceased donors and found to be equivalent, suggesting that stem cell-derived hepatocyles have potential to improve the preclinical assessment of human liver toxicity,” said Anthony Atala, M.D., Editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.”

The full article, “Developing high fidelity hepatotoxicity models from pluripotent stem cells,” can be accessed at http://www.stemcellstm.com

FDA approves Phase II of stem cell trial for ALS led by U-M’s Dr. Eva Feldman

ANN ARBOR, Mich. — For nearly two years, University of Michigan neurologist Eva Feldman, M.D., Ph.D. has led the nation’s first clinical trial of stem cell injections in patients with the deadly degenerative disease known as amyotrophic lateral sclerosis, often called ALS or Lou Gehrig’s disease.

Now, a new approval from the U.S. Food and Drug Administration paves the way for U-M to become the second site in the trial, pending approval of the U-M Institutional Review Board. To date, the first phase of the trial has taken place at Emory University, with Feldman serving as principal investigator.

The FDA approval of a Phase II trial was announced today by Neuralstem, the company whose product the trial is testing. The Phase II trial will continue to evaluate the safety of the stem cell injections, delivered directly into patients’ spinal cords in escalating doses of up to 400,000 cells per injection, with a maximum of 40 injections. It will also assess any signs that the injections might be impacting patients’ ALS symptoms or progression.

Feldman serves as an unpaid consultant to the company, and has led the analysis of results from the Phase I trial. In data presented last year, spinal cord injections of up to 100,000 cells were delivered safely and tolerated well — with possible signs that in one subgroup of participants, ALS progression may have been interrupted.

“In Phase II, we’ll be injecting stem cells into the upper part of the spinal cord, and our goal is to continue to assess whether this approach is safe, and to look at whether this approach offers some benefit to our patients. We are very pleased at the potential to bring this trial to the University of Michigan, where the initial research behind this technology was done — as well as having it continue at Emory,” says Feldman, the Russell N. DeJong Professor of Neurology at the U-M Medical School, research director of U-M’s ALS Clinic, and director of U-M’s A. Alfred Taubman Medical Research Institute. The neurosurgeon for the trial is Parag Patil, M.D, Ph.D.

The approach uses injections of stem cells delivered during an operation performed by a neurosurgeon. The first phase of the trial involved 15 patients; specific plans for Phase II are still being made but information will be available at neuralstem.com.

If the U-M site team receives IRB approval to recruit local participants, more information will be available at uofmhealth.org. The study at U-M will be funded by the ALS Association, the National Institutes of Health and Neuralstem.

New method for mass-producing RPE cells paves way to treating age-related blindness

Durham, NC – Scientists have developed a new, simpler way to produce human pluripotent stem cells in quantities large enough that they can be used to develop treatments for age-related macular degeneration — the leading cause of irreversible blindness among the elderly. The results of this new study are published in the current issue of STEM CELLS Translational Medicine.

Age-related macular degeneration (AMD), which affects up to 50 million people worldwide, is associated with the dysfunction and death of retinal pigment epithelial (RPE) cells.

“As a result, there has been significant interest in developing RPE culture systems both to study AMD disease mechanisms and to provide substrate for possible cell-based therapies. Because of their indefinite self-renewal, human pluripotent stem cells (hPSCs) have the potential to provide an unlimited supply of RPE-like cells,” noted Donald Zack, M.D., Ph.D., who with Julien Maruotti, Ph.D., led the team of researchers from the Wilmer Institute, Johns Hopkins University School of Medicine in Baltimore, Md., and the Institute of Vision in Paris in conducting the study.

“However, most of the currently accepted methods in use for deriving RPE cells from hPSC involve time-and-labor-consuming  steps done by hand, and they don’t yield large enough amount of the differentiated cells – which has posed a problem when trying to use them to develop potential new therapies,” Dr. Maruotti added.

The Zack/Maruotti team simplified RPE cell production by modifying a standard protocol for isolating the cells from spontaneously differentiating hPSC monolayers. In the new method, hPSCs were amplified by clonal propagation and the RPE cells enriched by serial passage rather than mechanical picking.

“These modifications eliminate the need for the time- and labor consuming manual steps usually required to culture hPSCs and to purify the RPE population, and thereby provide a readily scalable approach to generate large numbers of high quality RPE cells — up to 36 times more than the best protocols previously reported during the same time interval,” Dr. Zack said.

“This improved process represents a step toward mass production of RPE and could prove useful for applications requiring large number of cells such as cell therapy, drug screening or disease modelling,” said Anthony Atala, M.D., Editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.