Bedford researcher IDs genes separating adult, embryonic stem cells

By Marc Songini,

Scientists at the Bedford Research Foundation (BRF) believe they may have discovered the key genetic differences between embryonic stem cells and adult stem cells.

Working with a team of clinician scientists at the University of Athens in Greece, the Bedford-based BRF researchers found a connection between cell multiplication and a set of genes. It’s well known that stem cells have a widespread use in many therapies. The more controversial embryonic stem cells are capable of virtual endless multiplication and can replicate into any cell in the body. However, adult stem cells have proved they are limited in their scalability and adaptability.

For years, scientists have been trying to understand just what sets the two stem cell types apart. Now, according to BRF stem cell researcher Ann Kiessling, it appears that early human embryo cells have circadian genes — that is, genes that have a roughly 24-hour cycle. This was surprising; although scientists have learned that some human tissues cycle every 24 hours (in phase with a master pacemaker in the brain that responds to light and dark), it was assumed that early embryos were too small to function like fully-grown tissue.

Additionally, Kiessling saw that the RB gene, a powerful cell blockade, was de-activated in the early embryo cells. Because RB is a well-studied blockade that prevents cells from multiplying unless required, this also was surprising. The lack of RB and the presence of a circadian oscillator are unique characteristics that enable independent, continuous cell duplication, she claimed.

To understand the cell machinery needed for independent, highly accurate cell multiplication, it’s necessary to understand early embryos, “because they are the true stem cells,” she stated.