A Prkci Gene Keeps Stem Cells in Check

EScells650

THE GENE PRKCI PROMOTES THE GENERATION OF DIFFERENTIATED CELLS (RED). HOWEVER IF PRKCI ACTIVITY IS REDUCED OR ABSENT, NEURAL STEM CELLS (GREEN) ARE PROMOTED. Credit: IN KYOUNG MAH.

When it comes to stem cells, too much of a good thing isn’t wonderful: producing too many new stem cells may lead to cancer; producing too few inhibits the repair and maintenance of the body.

In a paper published in Stem Cell Reports, USC researcher In Kyoung Mah from the lab of Francesca Mariani and colleagues at the University of California, San Diego, (UCSD) describe a key gene in maintaining this critical balance between producing too many and too few stem cells. Called Prkci, the gene influences whether stem cells self-renew to produce more stem cells, or differentiate into more specialized cell types, such as blood or nerves.

Aged neurons can now be generated using stem cell technology

Credit: Jerome Mertens and Fred Gage

Credit: Jerome Mertens and Fred Gage

Diseases of human aging have always been difficult to study in the lab. Stem cell technology always had promise, but when scientists reverted a skin cell from an 89-year-old woman back into a stem cell-like state, the cells became young again. Now, a new approach, presented October 8 in Cell Stem Cell, makes it possible to generate and grow cultures of neurons with gene expression reflecting a patient’s age.

These aged neurons are ideal for studying the differences between the old and young brain. For example, older neurons were found to have defects in the transport of proteins into and out of the nucleus, a mechanism recently suggested to play an important role in neurodegenerative disorders.

Studying Stem Cells With Computational Image Analysis

Stem cell research is one of the most exciting and rapidly evolving fields in science today. Using the latest software developed at Drexel’s Computational Image Sequence Analysis Lab , scientist can now automatically track tens of thousands of time lapse images to better determine cell growth, movement, and proliferation (a process that used to take months of manual analysis to complete).

Learn more about the research by clicking the link below…
http://drexel.edu/now/archive/2015/September/CloneView/

Scientists create functional liver cells from stem cells

Major implications for liver biology and drug discovery

THE HEBREW UNIVERSITY OF JERUSALEM

Image: This image shows stem cell-derived hepatocytes emerging. Photo Credit: Yaakov Nahmias/Hebrew University

The liver plays a critical role in human metabolism. As the gatekeeper of the digestive track, this massive organ is responsible for drug breakdown and is therefore the first to be injured due to overdose or misuse. Evaluating this drug-induced liver injury is a critical part of pharmaceutical drug discovery and must be carried out on human liver cells. Regretfully, human liver cells, called hepatocytes, are in scarce supply as they can only be isolated from donated organs.

Now, in research published on the cover of the July edition of Hepatology, scientists from the Hebrew University of Jerusalem’s Alexander Grass Center for Bioengineering report that they produced large amounts of functional liver cells from human embryonic and genetic engineered stem cells.

Stem cell gene therapy developed at UCLA holds promise for eliminating HIV infection

Method modifies immune cells to attack the virus, could be used to treat other diseases

Scientists at the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research are one step closer to engineering a tool that could one day arm the body’s immune system to fight HIV — and win. The new technique harnesses the regenerative capacity of stem cells to generate an immune response to the virus.

The findings were published today in the journal Molecular Therapy.

Protein plays unexpected role in embryonic stem cells

A protein long believed to only guard the nucleus also regulates gene expression and stem cell development

LA JOLLA – What if you found out that pieces of your front door were occasionally flying off the door frame to carry out chores around the house? That’s the kind of surprise scientists at the Salk Institute experienced with their recent discovery that nucleoporins—proteins that act as cellular “doorways” to help manage what goes in and out of a cell’s nucleus—are actually much bigger players in expressing genes than previously thought.

The finding, published June 16, 2015 in the journal Genes & Development, shows that nucleoporins play an important role in maintaining embryonic stem cells before they begin to develop into specific tissues. This discovery gives a new understanding to genetic diseases that are caused by mutations in these proteins. One nucleoporin protein in particular has a dramatic—and unanticipated—function in the formation of neurons from stem cells.

Bioinformatics – How Computer Science is Changing Biology

Please see infographic – Bioinformatics: How Computer Science is Changing Biology

 

Stem Cell Injection May Soon Reverse Vision Loss Caused By Age-Related Macular Degeneration

An injection of stem cells into the eye may soon slow or reverse the effects of early-stage age-related macular degeneration, according to new research from scientists at Cedars-Sinai. Currently, there is no treatment that slows the progression of the disease, which is the leading cause of vision loss in people over 65.

“This is the first study to show preservation of vision after a single injection of adult-derived human cells into a rat model with age-related macular degeneration,” said Shaomei Wang, MD, PhD, lead author of the study published in the journal STEM CELLS and a research scientist in the Eye Program at the Cedars-Sinai Board of Governors Regenerative Medicine Institute.

The stem cell injection resulted in 130 days of preserved vision in laboratory rats, which roughly equates to 16 years in humans.

Engineering Stem Cells: From In Vitro to In Situ


Engineering Stem Cells: From In Vitro to In Situ

Stem cells are a valuable cell source for tissue engineering, disease modeling and drug screening. A recent discovery in stem cell biology is that differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSCs) and desired cell types. Although the effects of transcriptional factors and chemical compounds have been widely studied, the role of biophysical factors on cell reprogramming is not clear. Dr. Li will present his findings on how biophysical factors can regulate the epigenetic state and thus the cell memory and reprogramming process, which has important implications in cell conversion into iPSCs and specific cell types. To illustrate the important role played by stem cells in tissue regeneration and remodeling in vivo, Dr. Li will use blood vessel regeneration as an example to demonstrate an evolution from in vitro tissue engineering to in situ tissue engineering approach. In this approach, endogenous stem cells are recruited by the use of bioactive scaffolds to promote tissue regeneration. In addition, endogenous stem cells are also involved in the regeneration of microvessels and the development of vascular diseases, suggesting a general role of stem cells in vascular remodeling.

Stem Cells Show Promise in Reducing Hardening of the Arteries

Durham, NC – The medical world is excited about the potential that stem cells have demonstrated in aiding the recovery of patients who have suffered a heart attack. Now, a new study appearing in the January issue of STEM CELLS Translational Medicine indicates that stem cells may also benefit those who suffer from hardening of the arteries.

Hardening of the arteries – or atherosclerosis – occurs due to a buildup of fats, cholesterol and other substances in and on the artery walls. The arteries become hardened by fibrous tissue and calcification and, as the plaque grows, it clogs the artery tubes, reducing the oxygen and blood supply to the affected organ. If the artery becomes severely blocked, it can cause death of the tissue fed by the artery and lead to a heart attack or stoke.