Young Girl Receives Lifesaving Windpipe Transplant Made From Her Stem Cells

Hannah Warren was born without a trachea but now has one made from plastic fibers and a stew of her own stem cells.

The 2-year-old Korean Canadian has spent every day of her life in intensive care, kept alive by a tube that substituted for the windpipe that was supposed to connect her mouth to her lungs. But nearly a month after her transplant, the toddler is mostly breathing on her own and is responding to doctors and nurses.

The surgery, pioneered by Dr. Paolo Macchiarini, director of the Advanced Center for Translational Regenerative Medicine at the Karolinska Institute in Stockholm, was only the sixth performed in the world, and Hannah was the youngest patient and first to receive the transplant in the U.S. The procedure was approved by the FDA as an experimental operation for patients with very little hope of survival; being born without a trachea is fatal in 99% of cases.

For complete article see Time.com

FDA approves Phase II of stem cell trial for ALS led by U-M’s Dr. Eva Feldman

ANN ARBOR, Mich. — For nearly two years, University of Michigan neurologist Eva Feldman, M.D., Ph.D. has led the nation’s first clinical trial of stem cell injections in patients with the deadly degenerative disease known as amyotrophic lateral sclerosis, often called ALS or Lou Gehrig’s disease.

Now, a new approval from the U.S. Food and Drug Administration paves the way for U-M to become the second site in the trial, pending approval of the U-M Institutional Review Board. To date, the first phase of the trial has taken place at Emory University, with Feldman serving as principal investigator.

The FDA approval of a Phase II trial was announced today by Neuralstem, the company whose product the trial is testing. The Phase II trial will continue to evaluate the safety of the stem cell injections, delivered directly into patients’ spinal cords in escalating doses of up to 400,000 cells per injection, with a maximum of 40 injections. It will also assess any signs that the injections might be impacting patients’ ALS symptoms or progression.

Feldman serves as an unpaid consultant to the company, and has led the analysis of results from the Phase I trial. In data presented last year, spinal cord injections of up to 100,000 cells were delivered safely and tolerated well — with possible signs that in one subgroup of participants, ALS progression may have been interrupted.

“In Phase II, we’ll be injecting stem cells into the upper part of the spinal cord, and our goal is to continue to assess whether this approach is safe, and to look at whether this approach offers some benefit to our patients. We are very pleased at the potential to bring this trial to the University of Michigan, where the initial research behind this technology was done — as well as having it continue at Emory,” says Feldman, the Russell N. DeJong Professor of Neurology at the U-M Medical School, research director of U-M’s ALS Clinic, and director of U-M’s A. Alfred Taubman Medical Research Institute. The neurosurgeon for the trial is Parag Patil, M.D, Ph.D.

The approach uses injections of stem cells delivered during an operation performed by a neurosurgeon. The first phase of the trial involved 15 patients; specific plans for Phase II are still being made but information will be available at neuralstem.com.

If the U-M site team receives IRB approval to recruit local participants, more information will be available at uofmhealth.org. The study at U-M will be funded by the ALS Association, the National Institutes of Health and Neuralstem.

New method for mass-producing RPE cells paves way to treating age-related blindness

Durham, NC – Scientists have developed a new, simpler way to produce human pluripotent stem cells in quantities large enough that they can be used to develop treatments for age-related macular degeneration — the leading cause of irreversible blindness among the elderly. The results of this new study are published in the current issue of STEM CELLS Translational Medicine.

Age-related macular degeneration (AMD), which affects up to 50 million people worldwide, is associated with the dysfunction and death of retinal pigment epithelial (RPE) cells.

“As a result, there has been significant interest in developing RPE culture systems both to study AMD disease mechanisms and to provide substrate for possible cell-based therapies. Because of their indefinite self-renewal, human pluripotent stem cells (hPSCs) have the potential to provide an unlimited supply of RPE-like cells,” noted Donald Zack, M.D., Ph.D., who with Julien Maruotti, Ph.D., led the team of researchers from the Wilmer Institute, Johns Hopkins University School of Medicine in Baltimore, Md., and the Institute of Vision in Paris in conducting the study.

“However, most of the currently accepted methods in use for deriving RPE cells from hPSC involve time-and-labor-consuming  steps done by hand, and they don’t yield large enough amount of the differentiated cells – which has posed a problem when trying to use them to develop potential new therapies,” Dr. Maruotti added.

The Zack/Maruotti team simplified RPE cell production by modifying a standard protocol for isolating the cells from spontaneously differentiating hPSC monolayers. In the new method, hPSCs were amplified by clonal propagation and the RPE cells enriched by serial passage rather than mechanical picking.

“These modifications eliminate the need for the time- and labor consuming manual steps usually required to culture hPSCs and to purify the RPE population, and thereby provide a readily scalable approach to generate large numbers of high quality RPE cells — up to 36 times more than the best protocols previously reported during the same time interval,” Dr. Zack said.

“This improved process represents a step toward mass production of RPE and could prove useful for applications requiring large number of cells such as cell therapy, drug screening or disease modelling,” said Anthony Atala, M.D., Editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

Parkinson’s Disease Research – Ask the Stem Cell Expert, Dr. Xianmin Zeng

Dr. Xianmin Zeng, associate professor at the Buck Institute for Research on Aging answers your questions about Parkinson’s disease and stem cell research. Zeng has a CIRM research grant to develop a stem cell treatment for Parkinson’s disease.

Parkinson’s disease is a neurodegenerative disorder, which leads to tremors, slowness in movement, impaired balance, and stiffness. There is no cure for Parkinson’s. And although drugs can help reduce symptoms, they eventually lose their effectiveness. Zeng has developed methods for transforming those stem cells into dopamine-producing nerve cells, the same cells that are lost in Parkinson’s disease. The hope is that by transplanting these cells into the brain, they will replace the lost cells and restore function in the brain.

For more information about CIRM-funded stem cell research related to Parkinson’s research, see fact sheet.

Stem Cells Show Promise in Extending Transplanted Kidneys’ Survival Time

Can stem cells provide an answer to the perplexing question of how to ensure long-term survival of transplanted kidneys? The results of a new Phase 1 clinical trial say maybe so. Details of the trial, conducted by researchers at Leiden University Medical Center, The Netherlands, are published in the current issue of STEM CELLS Translational Medicine.

Kidney transplants have long been the treatment of choice for many patients with end-stage renal disease, and the short-term results are excellent. But unfortunately, the viability of these kidneys over time has not improved accordingly, often due to fibrosis, which is a scarring of the transplanted organ generally caused by the immune system rejecting it.

The LUMC team, led by Marlies E.J. Reinders, M.D, Ph.D., and Ton J. Rabelink, M.D., Ph.D., decided to test whether stem cells might keep fibrosis in check. They focused on mesenchymal stromal cells, a type of stem cell found throughout the body, including in bone marrow.

Living with Multiple Sclerosis, Hoping for a Stem Cell Therapy

For complete text article see California Institute for Regenerative Medicine

Scientists Create Stem Cells From Urine

Some scientists from China used an unlikely item to make stem cells and it could change the way people think about and treat stem cell research.

According to Reuters, A stem cell biologist and his team have found some success while trying to convert kidney cells found in urine into stem cells. They were using a retrovirus to reprogram the cells, but the stem cells they created were high-risk for tumors. Now they are using vectors, “a type of DNA molecule useful in transporting genetic information.”

Pei Duanqing, Director of the Guangzhou Institutes of Biomedicine and Health, told Reuters that this breakthrough could put the controversy over embryonic stem cell research to rest and give researchers plenty of stem cells to work with in the future.

“It’s an unlimited sources of cells. It’s non-invasive, and the whole procedure is more pleasant than having to take skin biopsies or pluck needles into people,” explained Duanging.

The stem cells formed in a culture in 12 days and quickly transformed into neural cells. After being injected into the brains of newborn rats, there have been no signs of mutations or tumors.

The team continues to make tweaks to their method but have high hopes for the procedure.

BioCision Launches New Program to Support Stem Cell Training and Research

Program Provides Academic Centers in the U.S. and EU Cutting Edge Cryopreservation Tools

LARKSPUR, Calif. – Dec. 10, 2012 – As part of its ongoing effort to support the scientific community, BioCision LLC, a leader in the advanced temperature management of biomedical samples, announced the availability of free “Cool Stem Kits” to academic stem cell research programs in the U.S. and Europe. Stem cells are a promising area of research for an array of treatments and cures, but cultures require frequent handling and many labs lack the equipment needed to ensure the reproducibility required for clinical research.

“Nearly everyone inside and outside of the scientific community agrees that stem cell research represents one of the most exciting and promising frontiers for treating a myriad of diseases and conditions,” said Rolf Ehrhardt, CEO, BioCision. “As an innovator of sample handing, cooling and freezing products, we felt a program like this would be of great service to the stem cell community.”

Each “Cool Stem Kit” includes recently launch, second generation cooling products:

~ CoolBox XT™ Cell Freezing Workstation for ice-free, power-free sample cooling while preparing stem cells for cryopreservation or assays
~ CoolCell® LX Freezing Containers for alcohol-free cell cryopreservation to provide highly reproducible controlled-rate freezing
~ CoolSink™ XT module to eliminate temperature variability in the incubator or at 4° C
~ TruCool™ leak proof and barcoded cryovials
~ TruCool™ ergonomic microcentrifuge tubes
~ CryoCeps™ cryovials grippers

“The area of stem cell research is full of unknowns, which is part of what motivates scientists,” said Rick I. Cohen, Ph.D., Director of the Stem Cell Training Course at Rutgers University. “When we discovered BioCision’s cryopreservation products, we were eager to incorporate them into our research protocol to further standardize our research methods. The new system has not only increased overall efficiency, it has improved cell viability post thaw.”

To request a kit, please contact CoolStem@biocision.com. For more information about BioCision and the company’s full line of sample standardization products, please visit www.biocision.com.

About BioCision
BioCision’s mission is to standardize pre-analytical sample handling. BioCision develops novel products that eliminate variability in common, often-overlooked, laboratory procedures. The products are marketed globally and are widely used by the leading institutions in the biotech, pharmaceutical, clinical, diagnostic, academic and government scientific community. BioCision’s products include CoolRack®, CoolSink™ and ThermalTray™ laboratory tube and plate temperature standardizing modules, CoolBox™ ice-free benchtop coolers, CoolCell® alcohol-free cell freezing containers and TruCool™ accessories and consumables.

Low-cost, widely used diabetes drug could be key to treating deadliest brain cancer

Durham, NC – Researchers have discovered a protein that stops stem cells from forming the most common and lethal type of brain tumor. At the same time, they located a trigger that activates this protein — metformin, a low-cost drug widely prescribed to treat type 2 diabetes.

The findings published today in STEM CELLS Translational Medicine suggest a new treatment path for glioblastoma, a highly aggressive, deadly malignancy. The median survival time for adults diagnosed with glioblastoma is just one to two years.

“Researchers have been seeking a way to control the initiating cancer stem cell population, considered key to realizing the long-term survival of these patients,” said Drs. Chifumi Kitanaka and Atsushi Sato, who led the team of scientists from Yamagata University in Japan on the study. “Previous reports have underscored the idea that differentiation therapy, which involves controlling stem cells’ development into particular cells or tissue, is a promising approach to depleting the tumor-initiating cells in glioblastomas and in preventing their recurrence.”

In an earlier study, the Yamagata team had shown that a protein called FOXO3 promotes the differentiation of stem-like cells within human gliomas into non-cancerous cells in vitro. FOX (Forkhead box) proteins are important in regulating the expression of genes involved in cell growth, proliferation, differentiation and longevity. Undifferentiated tumor cells are associated with having much high tumor-initiating potential than differentiated cells.

The scientists next went in search of a therapeutic activator of FOXO3 and came up with metformin. This drug is widely used to control the amount of glucose in the blood by decreasing the amounts of glucose absorbed from food and produced by the liver, while at the same time increasing the body’s response to insulin.

“In mice studies, the administration of metformin had several benefits. It depleted the self-renewing and tumor-initiating cell population within established tumors, inhibited tumor formation by stem-like glioma-initiating cells in the brain and provided substantial survival benefit,” Dr. Sato said.

Dr. Kitanaka added, “Combined with the fact that metformin has already been used safely in the clinic and that it efficiently penetrates the blood-brain barrier and accumulates in the brain, our findings suggest that metformin is a strong candidate for clinical use as a cancer stem/initiating cell-targeting drug against glioblastoma as well as against some other human cancers.”

“This research team has established a novel link between glucose metabolism and cancer stem cells,” said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “Their finding suggests a potential new line of clinical research directed at this deadly form of brain cancer.”

The full article, “Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK,” can be accessed at http://www.stemcellstm.com.

Prostate Tissue Stem Cells and Cancer Progression

Lecture by Owen Witte, MD at David H. Koch Institute for Integrative Cancer Research